RADIACION
Radiación solar es el conjunto de radiaciones electromagnéticas emitidas por el Sol. El Sol se comporta prácticamente como un cuerpo negro el cual emite energía siguiendo la ley de Planck a una temperatura de unos 6000 K. La radiación solar se distribuye desde el infrarrojo hasta el ultravioleta. No toda la radiación alcanza la superficie de la Tierra, porque las ondas ultravioletas más cortas, son absorbidas por los gases de la atmósfera fundamentalmente por el ozono. La magnitud que mide la radiación solar que llega a la Tierra es la irradiancia, que mide la energía que, por unidad de tiempo y área, alcanza a la Tierra. Su unidad es el W/m² (vatio por metro cuadrado).
Efectos de la radiación solar sobre los gases atmosféricos
La atmósfera es diatérmana es decir, que no es calentada directamente por la radiación solar, sino de manera indirecta a través de la reflexión de dicha radiación en el suelo y en la superficie de mares y océanos.
Los fotones según su energía o longitud de onda son capaces de:
Fotoionizar la capa externa de electrones de un átomo (requiere una longitud de onda de 0,1 micra).
Excitar electrones de un átomo a una capa superior (requiere longitudes de onda entre 0,1 de micra y 1 micra).
Disociar una molécula (requiere longitudes de onda entre 0,1 de micra y 1 micra).
Hacer vibrar una molécula (requiere longitudes de onda entre 1 micra y 50 micras).
Hacer rotar una molécula (requiere longitudes de onda mayores que 50 micras).
La energía solar tiene longitudes de onda entre 0,15 micras y 4 micras por lo que puede ionizar un átomo, excitar electrones, disociar una molécula o hacerla vibrar.
La energía térmica de la Tierra (radiación infrarroja) se extiende desde 3 micras a 80 micras por lo que sólo puede hacer vibrar o rotar moléculas, es decir, calentar la atmósfera.
La energía solar como motor de la atmósferaLa energía recibida del sol, al atravesar la atmósfera de la Tierra calienta el vapor de agua en unas zonas de la atmósfera más que otras, provocando alteraciones en la densidad de los gases y, por consiguiente desequilibrios que causan la circulación atmosférica. Esta energía produce la temperatura en la superficie terrestre y el efecto de la atmósfera es aumentarla por efecto invernadero y mitigar la diferencia de temperaturas entre el día y la noche y entre el polo y el ecuador.
La mayor parte de la energía utilizada por los seres vivos procede del Sol, las plantas la absorben directamente y realizan la fotosíntesis, los herbívoros absorben indirectamente una pequeña cantidad de esta energía comiendo las plantas, y los carnívoros absorben indirectamente una cantidad más pequeña comiendo a los herbívoros.
La mayoría de las fuentes de energía usadas por el hombre derivan indirectamente del Sol, ya que el sol puede a través de toda su radiación lanzada ser aprovechada como energía para los humanos. Los combustibles fósiles preservan energía solar capturada hace millones de años mediante fotosíntesis, la energía hidroeléctrica usa la energía potencial del agua que se condensó en altura después de haberse evaporado por el calor del Sol. La energía eólica es otra forma de aprovechamiento de la radiación solar ya que ésta, al calentar con diferente intensidad distintas zonas de la superficie terrestre, da origen a los vientos que pueden ser utilizados para generar electricidad, mover embarcaciones, bombear las aguas subterráneas y otros muchos usos.
EFECTOS SOBRE LA SALUD
La exposición exagerada a la radiación solar puede ser perjudicial para la salud. Esto está agravado por el aumento de la expectativa de vida humana, que está llevando a toda la población mundial, a permanecer más tiempo expuesto a las radiaciones solares, con el riesgo mayor de cáncer de piel.
La radiación ultravioleta, es emitida por el Sol en longitudes de onda que van aproximadamente desde los 150 nm (1500 Å), hasta los 400 nm (4000 Å), en las formas UV-A, UV-B y UV-C pero a causa de la absorción por parte de la atmósfera terrestre, el 99% de los rayos ultravioletas que llegan a la superficie de la Tierra son del tipo UV-A. Ello nos libra de la radiación ultravioleta más peligrosa para la salud. La atmósfera ejerce una fuerte absorción que impide que la atraviese toda radiación con longitud de onda inferior a 290 nm (2900 Å). La radiación UV-C no llega a la tierra porque es absorbida por el oxígeno y el ozono de la atmósfera, por lo tanto no produce daño. La radiación UV-B es parcialmente absorbida por el ozono y llega a la superficie de la tierra, produciendo daño en la piel. Ello se ve agravado por el agujero de ozono que se produce en los polos del planeta.
Dirección de incidencia de la irradiación solar
El estudio de la dirección con la cual incide la irradiación solar sobre los cuerpos situados en la superficie terrestre, es de especial importancia cuando se desea conocer su comportamiento al ser reflejada. La dirección en que el rayo salga reflejado dependerá de la incidente.
Con tal fin se establece un modelo que distingue entre dos componentes de la irradiación incidente sobre un punto: la irradiación solar directa y la irradiación solar difusa.
Irradiación Solar Directa es aquella que llega al cuerpo desde la dirección del Sol.
Irradiación Solar Difusa es aquella cuya dirección ha sido modificada por diversas circunstancias (densidad atmosférica, partículas u objetos con los que choca, reemisiones de cuerpos, etc.). Por sus características esta luz se considera venida de todas direcciones. En un día nublado, por ejemplo, sólo tenemos radiación difusa.
La suma de ambas es la irradiación total (o global) incidente. La superficie del planeta está expuesta a la radiación proveniente del Sol. La tasa de irradiación depende en cada instante del ángulo que forman la normal a la superficie en el punto considerado y la dirección de incidencia de los rayos solares. Por supuesto, dada la lejanía del Sol respecto de nuestro planeta, podemos suponer, con muy buena aproximación, que los rayos del Sol inciden esencialmente paralelos sobre el planeta. No obstante, en cada punto del mismo, localmente considerado, la inclinación de la superficie respecto a dichos rayos depende de la latitud y de la hora del día para una cierta localización en longitud. Dicha inclinación puede definirse a través del ángulo que forman el vector normal a la superficie en dicho punto y el vector paralelo a la dirección de incidencia de la radiación solar.
Debemos evitar la exposición prolongada al sol puesto que esta representa una agresión contra la piel que puede producir el envejecimiento de la misma, la aparición de manchas o arrugas y es la responsable de la aparición de melanomas o cánceres de piel. Una exposición moderada al sol, especialmente los primeros días una protección del sol con la ropa adecuada, o el uso de cremas solares es la mejor prevención contra quemaduras producidas por el sol.
Radiación solar en el planeta tierra
La mayor parte de la energía que llega a nuestro planeta procede del Sol. El Sol emite energía en forma de radiación electromagnética. Estas radiaciones se distinguen por sus diferentes longitudes de onda. Algunas, como las ondas de radio, llegan a tener longitudes de onda de kilómetros, mientras que las más energéticas, como los rayos X o las radiaciones gamma tienen longitudes de onda de milésimas de nanómetro.
La energía que llega al exterior de la atmósfera lo hace en una cantidad fija, llamada constante solar. Esta energía es una mezcla de radiaciones de longitudes de onda entre 200 y 4000 nm, que se distingue entre radiación ultravioleta, luz visible y radiación infrarroja.
Radiación ultravioleta
Es la radiación ultravioleta de menor longitud de onda (360 nm), lleva mucha energía e interfiere con los enlaces moleculares. Especialmente las de menos de 300 nm que pueden alterar las moléculas de ADN, muy importantes para la vida. Estas ondas son absorbidas por la parte alta de la atmósfera, especialmente por la capa de ozono. Es importante protegerse de este tipo de radiación ya que por su acción sobre el ADN está asociada con el cáncer de piel. Sólo las nubes tipo cúmulos de gran desarrollo vertical atenúan éstas radiaciones prácticamente a cero. El resto de las formaciones tales como cirrus, estratos y cúmulos de poco desarrollo vertical no las atenúan, por lo cual es importante la protección aún en días nublados. Es importante tener especial cuidado cuando se desarrollan nubes cúmulos, ya que éstas pueden llegar a actuar como espejos y difusores e incrementar las intensidades de los rayos ultravioleta y por consiguiente el riesgo solar. Algunas nubes tenues pueden tener el efecto de lupa.
Luz visible
La radiación correspondiente a la zona visible cuya longitud de onda está entre 360 nm (violeta) y 760 nm (rojo), por la energía que lleva, tiene gran influencia en los seres vivos. La luz visible atraviesa con bastante eficacia la atmósfera limpia, pero cuando hay nubes o masas de polvo parte de ella es absorbida o reflejada.
Radiación infrarroja
La radiación infrarroja de más de 760 nm, es la que corresponde a longitudes de onda más largas y lleva poca energía asociada. Su efecto aumenta la agitación de las moléculas, provocando el aumento de la temperatura. El CO2 , el vapor de agua y las pequeñas gotas de agua que forman las nubes absorben con mucha intensidad las radiaciones infrarrojas.
La atmósfera se desempeña como un filtro ya que mediante sus diferentes capas distribuyen la energía solar para que a la superficie terrestre sólo llegue una pequeña parte de esa energía. La parte externa de la atmósfera absorbe parte de las radiaciones reflejando el resto directamente al espacio exterior, mientras que otras pasarán a la Tierra y luego serán irradiadas. Esto produce el denominado balance térmico, cuyo resultado es el ciclo del equilibrio radiante.
Según el tipo de radiación se conoce que de los 324 W .m -2 que llegan a la Tierra, en la parte alta de la atmósfera (1400 W.m -2 es la constante solar); 236 W.m -2 son reemitidos al espacio en forma de radiación infrarroja, 86 W.m -2 son reflejados por las nubes y 20 W.m -2 son reflejados por el suelo en forma de radiaciones de onda corta. Pero el reenvío de energía no se hace directamente, sino que parte de la energía reemitida es absorbida por la atmósfera y devuelta a la superficie, originándose el "efecto invernadero".
Aumento de la Temperatura Global.
Durante el siglo XX se ha constatado un aumento de la temperatura global y se estima que continúe así en los próximos decenios, esto preocupa al mundo científico y genera inquietudes en los más diversos ámbitos, ya que el calentamiento influye sobre el clima y por ende sobre la producción de alimentos, la salubridad mundial y en la economía en general. Pero no sólo la temperatura ha aumentado, también han aumentado en la atmósfera el CO² en un 25%; el CH4 un 100%; el N2O un 10%. Más recientemente han aparecido los cloro fluorocarbonados o CFC, Freón 11 y Freón 12 principalmente.
La causa del aumento de estos gases en la atmósfera es claramente consecuencia de la actividad humana: calefacción, industria, agricultura y transporte. Causa y a la vez efecto del aumento de la población desde la década de los años 20. La acumulación de estos gases contribuye a aumentar el calentamiento.
Energía interna de la Tierra
La temperatura va aumentando con el aumento de la profundidad en el interior de la Tierra hasta llegar a ser de alrededor de 5.000ºC en el núcleo interno. La fuente de energía que mantiene estas temperaturas es, principalmente, la descomposición radiactiva de elementos químicos del manto. Esta energía interna es responsable de las corrientes de convección que mueven las placas litosféricas, por lo que tiene importantes repercusiones en muchos procesos superficiales: volcanes, terremotos, movimiento de los continentes y formación de montañas, entre otros.